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CHAPTER
ONE

INTRODUCTION

1.1 Overview

OP2 (Oxford Parallel library for Unstructured mesh solvers) is a high-level embedded domain specific language (eDSL)
for writing unstructured mesh algorithms with automatic parellelisation on multi-core and many-core architectures.
The API is embedded in both C/C++ and Fortran.

The current OP2 eDSL supports generating code targeting multi-core CPUs with SIMD vectorisation and OpenMP
threading, many-core GPUs with CUDA or OpenMP offloading, and distributed memory cluster variants of these
using MPI. There is also experimental support for targeting a wider range of GPUs using SYCL and AMD HIP.

These pages provide detailed documentation on using OP2, including an installation guide, an overview of the C++
API, a walkthrough of the development of an example application, and developer documentation.

1.2 Licencing

OP2 is released as an open-source project under the BSD 3-Clause License. See the LICENSE file for more information.

1.3 Citing

To cite OP2, please reference the following paper:

G. R. Mudalige, M. B. Giles, 1. Reguly, C. Bertolli and P. H. J. Kelly, “OP2: An active library framework for solving
unstructured mesh-based applications on multi-core and many-core architectures,” 2012 Innovative Parallel Computing
(InPar), 2012, pp. 1-12, doi: 10.1109/InPar.2012.6339594.

@INPROCEEDINGS{6339594,

author={Mudalige, G.R. and Giles, M.B. and Reguly, I. and Bertolli, C. and Kelly, P.H.
—dy

booktitle={2012 Innovative Parallel Computing (InPar)},

title={OP2: An active library framework for solving unstructured mesh-based.
—applications on multi-core and many-core architectures},

year={2012},

volume={},

number={},

pages={1-12},

doi={10.1109/InPar.2012.6339594}}



https://github.com/OP-DSL/OP2-Common
https://github.com/OP-DSL/OP2-Common/blob/d464527/LICENSE
https://ieeexplore.ieee.org/document/6339594
https://ieeexplore.ieee.org/document/6339594
https://ieeexplore.ieee.org/document/6339594

OP2 Documentation, Release latest

1.4 Support

The preferred method of reporting bugs and issues with OPS is to submit an issue via the repository’s issue tracker.
Users can also email the authors directly by contacting the OP-DSL team.

1.5 Funding

Development of the OP2 is or has been part supported by the Engineering and Physical Sciences Research Council
(EPSRC) grants EP/1006079/1, EP/100677X/1 on Multi-layered Abstractions for PDEs, EP/JO10553/1 Algorithms
and Software for Emerging Architectures (ASEArch), EP/S005072/1 Strategic Partnership in Computational Science
for Advanced Simulation and Modelling of Engineering Systems - ASiMoV, the Royal Society through their Industry
Fellowship Scheme (INF/R1/180012), the UK Technology Strategy Board and Rolls-Royce plc. through the SILOET
project, The Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences and the European Commission.
We are also grateful for hardware resources during development from the Oak Ridge Leadership Computing Facility at
the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC05-000R22725, ARCHER and ARCHER?2 UK National Supercomputing Service, the University
of Oxford Advanced Research Computing (ARC) facility and hardware donations/access from Nvidia and Intel.
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https://github.com/OP-DSL/OP2-Common/issues
https://op-dsl.github.io/about.html
http://www.archer.ac.uk/
https://www.archer2.ac.uk/
http://dx.doi.org/10.5281/zenodo.22558
http://dx.doi.org/10.5281/zenodo.22558

CHAPTER
TWO

GETTING STARTED

2.1 Spack

Coming soon.

2.2 Manual Build

2.2.1 Toolchain and Build Dependencies
These are likely provided in some form by either your distribution’s package manager or pre-installed and loaded via
commands such as with Environment Modules:

* GNU Make > 4.2

¢ A C/C++ compiler: Currently supported compilers are GCC, Clang, Cray, Intel, IBM XL and NVHPC.

* (Optional) A Fortran compiler: Currently supported compilers are GFortran, Cray, Intel, IBM XL and NVHPC.

¢ (Optional) An MPI implementation: Any implementation with the mpicc, mpicxx, and mpif90® wrappers is
supported.

* (Optional) NVIDIA CUDA > 9.2

2.2.2 Library Dependencies
These may also be provided from various package managers and modules, however they must be built with a specific
configuration and with the same compiler toolchain that you plan on using to build OP2:

¢ (Optional) (PT-)Scotch: Used for mesh partitioning. You must build both the sequential Scotch and parallel
PT-Scotch with 32-bit indicies (-DIDXSIZE=32) and without threading support (remove -DSCOTCH_PTHREAD).

* (Optional) ParMETIS: Used for mesh partitioning.
* (Optional) KaHIP: Used for mesh partitioning.

* (Optional) HDF5: Used for HDF5 1/O. You may build with and without --enable-parallel (depending on if
you need MPI), and then specify both builds via the environment variables listed below.

Note: To build the MPI enabled OP2 libraries you will need a parallel HDFS5 build, however you only need a sequential
HDFS5 build if you need HDF5 support for the sequential OP2 libraries.



http://modules.sourceforge.net/
https://www.labri.fr/perso/pelegrin/scotch/
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
https://kahip.github.io/
https://www.hdfgroup.org/solutions/hdf5/
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2.2.3 Building

First, clone the repository:

git clone https://github.com/OP-DSL/0OP2-Common.git
cd OP2-Common

Then, setup toolchain configuration:

[export OP2_COMPILER={gnu, cray, intel, x1, nvhpc}

Alternatively for a greater level of control:

export OP2_C_COMPILER={gnu, clang, cray, intel, xl1, nvhpc}
export OP2_C_CUDA_COMPILER={nvhpc}
export OP2_F_COMPILER={gnu, cray, intel, x1, nvhpc}

Note: In some scenarios you may be able to use a profile rather than specifying an OP2_COMPILER. See make-
filesyREADME.md for more information.

Then, specify the paths to the library dependency installation directories:

export PTSCOTCH_INSTALL_PATH=<path/to/ptscotch>
export PARMETIS_TINSTALL_PATH=<path/to/parmetis>
export KAHIP_INSTALL_PATH=<path/to/kahip>

export HDFS5_{SEQ, PAR} INSTALL_PATH=<path/to/hdf5>

export CUDA_INSTALL_PATH=<path/to/cuda/toolkit>

Note: You may not need to specify the X_INSTALL_PATH varaibles if the include paths and library search paths are
automatically injected by your package manager or module system.

If you are using CUDA then you may also specify a comma separated list of target architectures for which to generate
code for:

[export NV_ARCH={Fermi, Kepler, ..., Ampere}[,{Fermi, ...}]

Make the build config, verifying that the compilers, libraries and flags are as you expect:

[make -C op2 config

Finally, build OP2 and an example app:

make -C op2 -j$(nproc)
make -C apps/c/airfoil/airfoil_plain/dp -j$(nproc)

Warning: The MPI variants of the libraries and apps will only be built if an mpicxx executable is found. It is
up to you to ensure that the MPI wrapper wraps the compiler you specify via OP2_COMPILER. To manually set the
path to the MPI executables you may use MPT_INSTALL_PATH.
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https://github.com/OP-DSL/OP2-Common/blob/d464527/makefiles/README.md
https://github.com/OP-DSL/OP2-Common/blob/d464527/makefiles/README.md

CHAPTER
THREE

DEVELOPING AN OP2 APPLICATION

This page provides a tutorial in the basics of using OP2 for unstructured-mesh application development.

3.1 Example Application

The tutorial will use the Airfoil application, a simple non-linear 2D inviscid airfoil code that uses an unstructured mesh.
It is a finite volume application that solves the 2D Euler equations using a scalar numerical dissipation. The algorithm
iterates towards the steady state solution, in each iteration using a control volume approach - for example the rate at
which the mass changes within a control volume is equal to the net flux of mass into the control volume across the four
faces around the cell.

Airfoil consists of five loops, save_soln, adt_calc, res_calc, bres_calc and update, within a time-marching
iterative loop. Out of these, save_soln and update are what we classify as direct loops where all the data accessed
in the loop is defined on the mesh element over which the loop iterates over. Thus for example in a direct loop, a loop
over edges will only access data defined on edges. The other three loops are indirect loops. In this case when looping
over a given type of elements, data on other types of elements will be accessed indirectly, using mapping tables. Thus
for example res_calc iterates over edges and increments data on cells, accessing them indirectly via a mapping table
that gives the explicit connectivity information between edges and cells.

The standard mesh size solved with Airfoil consists of 1.5M edges. Here the most compute intensive loop is res_calc,
which is called 2000 times during the total execution of the application and performs about 100 floating-point operations
per mesh edge.

* Go to the OP2/apps/c/airfoil/airfoil/airfoil_tutorial/original directory and open the
airfoil_orig.cpp file to view the original application.

» Use the Makefile in the same directory to compile and then run the application. The new_grid.dat (download-
able from here) needs to be present in the same directory as the executable.

* The program executes by reporting the rms value of the pressure held on the cells for every 100 iterations and
ends by comparing this value to the reference value of the computation at 1000 iterations. If the solution is within
machine precision of the reference value, the execution is considered to be validated (PASS). This is the same
criteria required to validate any parallel versions of the application, including the paralleizations generated by
OP2 as detailed below.



https://op-dsl.github.io/docs/OP2/new_grid.dat
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3.2 Original - Load mesh and initialization

The original code begins with allocating memory to hold the mesh data and then initializing them by reading in the
mesh data, form the new_grid.dat text file:

FILE “fp;
if ((fp = fopen(FILE_NAME_PATH, "r")) == NULL) {
printf("can't open file FILE_NAME_PATH\n");
exit(-1);
}
if (fscanf(fp, "%d %d %d %d \n", &mnode, &ncell, &nedge, &nbedge) != 4) {
printf("error reading from FILE_NAME_PATH\n");

exit(-1);
}
cell = (int *)malloc(4 * ncell * sizeof(int));
edge = (int *)malloc(2 * nedge * sizeof(int));
ecell = (int *)malloc(2 * nedge * sizeof(int));
bedge = (int *)malloc(2 * nbedge * sizeof(int));

becell = (int *)malloc(l * nbedge * sizeof(int));
bound = (int *)malloc(l * nbedge * sizeof(int));
X = (double *)malloc(2 * &

nnode sizeof(double));
q = (double *)malloc(4 * ncell * sizeof(double));
gold = (double *)malloc(4 * ncell * sizeof(double));
res = (double *)malloc(4 * ncell * sizeof(double));
adt = (double *)malloc(l * ncell * sizeof(double));

for (int n = 0; n < nnode; n++) {
if (fscanf(fp, "%1f %1f \n", &x[2 * n], &x[2 * n + 1]) '= 2) {
printf("error reading from FILE_NAME_PATH\n");
exit(-1);
}
}

for (dint n = 0; n < ncell; n++) {
if (fscanf(fp, "%d %d %d %d \n", &cell[4 * n], &cell[4 * n + 1],
&cell[4 * n + 2], &cell[4 * n + 3]) != 4) {
printf("error reading from FILE_NAME_PATH\n");
exit(-1);
}
}
for (int n = 0; n < nedge; n++) {
if (fscanf(fp, "%d %d %d %d \n", &edge[2 * n], &edge[2 * n + 1],
&ecell[2 * n], &ecell[2 * n + 1]) != 4) {
printf("error reading from FILE_NAME_PATH\n");
exit(-1);
}
}
for (int n = 0; n < nbedge; n++) {
if (fscanf(fp, "%d %d %d %d \n", &bedge[2 * n], &bedge[2 * n + 1],
&becell[n], &bound[n]) !'= 4) {
printf("error reading from FILE_NAME_PATH\n");
exit(-1);
(continues on next page)
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(continued from previous page)

3

}
fclose(fp);

The code then initialize q and res data arrays to 0.

3.3 Original - Main iteration and loops over mesh

The main iterative loop is a for loop that iterates for some NUM_ITERATIONS which in this case is set to 1000 iterations.
Within this main iterative loops there are 5 loops over various mesh elements (as noted above) including direct and
indirect loops.

3.4 Build OP2

Build OP2 using instructions in the Getting Started. page.

3.5 Step 1 - Preparing to use OP2

First, include the following header files, then initialize OP2 and finalize it as follows:

"

#include "op_seq.h"

int main(int argc, char **argv) {

//Initialise the OP2 library, passing runtime args, and setting diagnostics level to.
—low (1)

op_init(argc, argv, 1);

free(adt);
free(res);

//Finalising the OP2 library
op_exit();
}

By this point you need OP2 set up - take a look at the Makefile in stepl, and observe that the include and library
paths are added, and we link against op2_seq back-end library. Using the op_seq.h header file and linking with the
sequential back-end OP2 lib produces what we call a developer sequential version of the application. This should be
used to successively develop the rest of the application by using the OP2 API and validate its numerical output, as we
do so in the next steps.

3.3. Original - Main iteration and loops over mesh 7


fhttps://op2-dsl.readthedocs.io/en/latest/getting_started.html
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3.6 Step 2 - OP2 Declaration

Declare sets - The Airfoil application consists of four mesh element types (which we call sets): nodes, edges, cells and
boundary edges. These needs to be declared using the op_set API call together with the number of elements for each
of these sets:

// declare sets

op_set nodes = op_decl_set(nnode, '"nodes" );
op_set edges = op_decl_set(nedge, "edges" );
op_set bedges = op_decl_set(nbedge, "bedges");
op_set cells = op_decl_set(ncell, ‘"cells" );

Later, we will see how the number of mesh elements can be read in directly from an hdf5 file using the op_set_hd£5
call.

When developing your own application with OP2, or indeed converting an application to use OP2, you will need to
decide on what mesh element types, i.e. sets will need to be declared to define the full mesh. A good starting point for
this design is to see what mesh elements are used the loops over the mesh.

Declare maps - Looking at the original Airfoil application’s loops we see that mappings between edges and nodes,
edges and cells, boundary edges and nodes, boundary edges and cells, and cells and nodes are required. This can be
observed by the indirect access to data in each of the loops in the main iteration loops. These connectivity information
needs to be declared via the op_decl_map API call:

//declare maps

op_map pedge = op_decl_map(edges, nodes, 2, edge, "pedge" );
op_map pecell = op_decl _map(edges, cells, 2, ecell, '"pecell" );
op_map pbedge = op_decl_map(bedges, nodes, 2, bedge, "pbedge" );
op_map pbecell = op_decl_map(bedges, cells, 1, becell, "pbecell");
op_map pcell = op_decl_map(cells, nodes, 4, cell, "pcell” );

The op_decl_map requires the names of the two sets for which the mapping is declared, its arity, mapping data (as in
this case allocated in integer blocks of memory) and a string name.

Declare data - All data declared on sets should be declared using the op_decl_dat API call. For Airfoil this consists
of the mesh coordinates data x, new and old solution q and g_o1ld, area time step adt, flux residual res and boundary
flag bound that indicates if the edge is a boundary edge:

//declare data on sets

op_dat p_bound = op_decl_dat(bedges, 1, "int", bound, "p_bound");
op_dat p_x = op_decl_dat(nodes, 2, "double", x, "p_x" );
op_dat p_g = op_decl_dat(cells, 4, "double", g, "p_q" );
op_dat p_gold = op_decl_dat(cells, 4, "double", gold, "p_gold" );
op_dat p_adt = op_decl_dat(cells, 1, "double", adt, "p_adt" );
op_dat p_res = op_decl_dat(cells, 4, "double", res, "p_res" );

Declare constants - Finally global constants that are used in any of the computations in the loops needs to be declared.
This is required due to the fact that when using code-generation later for parallelizations such as on GPUs (e.g. using
CUDA), global constants needs to be copied over to the GPUs before they can be used in a GPU kernel. Declaring them
using the op_decl_const API call will indicate to the OP2 code-generator that these constants needs to be handled
in a special way, generating code for copying them to the GPU for the relevant back-ends.

//declare global constants
op_decl_const(l, "double", &gam );
op_decl_const(l, "double", &gml );

(continues on next page)
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(continued from previous page)
op_decl_const(1l, "double", &cfl );
op_decl_const(l, "double", &eps );
op_decl_const(1l, "double", &alpha);
op_decl_const(4, "double", qinf );

Finally information about the the declared mesh can be viewed using a diagnostics level of 2 in op_init and calling
op_diagnostic_output() API call:

/% main application */

int main(int argc, char **argv) {

//Initialise the OP2 library, passing runtime args, and setting diagnostics level to low.
~ (D

op_init(argc, argv, 2);

.. op_decl_set ...
. op_decl_map ...
. op_decl_dat ...
. op_decl_const

//output mesh information
op_diagnostic_output();

Finally compile the step2 application and execute using the following runtime flag:

[ ./airfoil_step2 OP_NO_REALLOC

The OP_NO_REALLOC runtime flag instructs to the OP2 back-end to simply use the already allocated memory for sets,
maps and data in the declaration, without internally de-allocating them. This helps the developer to gradually build up
the application with the conversion to OP2 API (as we are do here), checking for validation on each step. However,
this behavior is only specified for the developer sequential version, which we are developing here. None of the parallel
versions generated via the code generator nor the code generated sequential version gen_seq will work as they de-
allocate the initial memory and move the mesh to obtain best parallel performance.

3.7 Step 3 - First parallel loop : direct loop

‘We can now convert the first loop to use the OP2 API. In this case its a direct loop called save_soln that iterates over
cells and saves the previous time-iteration’s solution, g to q_old:

//save_soln : iterates over cells
for (int iteration = 0; iteration < (ncell * 4); ++iteration) {
gold[iteration] = q[iteration];

}

This is a direct loops due to the fact that all data accessed in the computation are defined on the set that the loop iterates
over. In this case the iteration set is cells.

To convert to the OP2 API we first outline the loop body (elemental kernel) to a subroutine:

//outlined elemental kernel
inline void save_soln(double *q, double *qold) {
for (int n = 0; n < 4; n++)

qold[n] = q[n];

(continues on next page)
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(continued from previous page)

}

//save_soln : iterates over cells
for (int iteration = 0; iteration < (ncell * 4); ++iteration) {
save_soln(&q[iteration], &qold[iteration]);

}

Now we can directly declare the loop with the op_par_loop API call:

op_par_loop(save_soln, "save_soln", cells,
op_arg_dat(p_q, -1, OP_ID, 4, "double", OP_READ ),
op_arg_dat(p_qold, -1, OP_ID, 4, "double", OP_WRITE));

Note how we have:
* indicated the elemental kernel save_soln in the first argument to op_par_loop
e used the op_dat™ s names " “p_g and p_gold in the API call
* noted the iteration set cells (3rd argument)
* indicated the direct access of q and q_old using OP_ID

* indicated that p_q is read only (OP_READ) and g_old is written to only (OP_WRITE), by looking through the
elemental kernel and identifying how they are used/accessed in the kernel.

* given that p_q is read only we also indicate this by the key word const for save-soln elemental kernel.

¢ The fourth argument of an op_arg_dat is the dimension of the data. For p_q and p_qold there are 4 doubles
per mesh point.

Compile and execute (again using OP_NO_REALLOC) the modified application (see code in . . /step3) and check if the
solution validates.

3.8 Step 4 - Indirect loops

The next loop in the application adt_calc calculate area/timstep and iterates over cells. In this case we see that the
loop is an indirect loop where the data x on the four nodes connected to a cell is accessed indirectly via a cells to nodes
mapping. Additionally data adt are accessed directly where adt is data on the cells:

//adt_calc - calculate area/timstep : iterates over cells
for (int iteration = 0; iteration < ncell; ++iteration) {

int maplidx = cell[iteration * 4 + 0];
int map2idx = cell[iteration * 4 + 1];
int map3idx = cell[iteration * 4 + 2];
int map4idx = cell[iteration * 4 + 3];

double dx, dy, ri, u, v, c;

ri = 1.0f / q[4 * iteration + 0];

u=ri®q[4 * iteration + 1];
v =ri* q[4 * iteration + 2];
c = sqrt(gam * gml * (ri * q[4 * iteration + 3] - 0.5f * (u * u + v * v)));

dx = x[2 * map2idx + 0] - x[2 * maplidx + 0];

(continues on next page)
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(continued from previous page)
dy = x[2 * map2idx + 1] - x[2 * maplidx + 1];
adt[iteration] = fabs(u * dy - v * dx) + ¢ * sqrt(dx * dx + dy * dy);

dx = x[2 * map3idx + 0] - x[2 * map2idx + 0];
dy = x[2 * map3idx + 1] - x[2 * map2idx + 1];
adt[iteration] += fabs(u * dy - v * dx) + ¢ * sqrt(dx * dx + dy * dy);

dx = x[2 * map4idx + 0] - x[2 * map3idx + 0];
dy = x[2 * map4idx + 1] - x[2 * map3idx + 1];
adt[iteration] += fabs(u * dy - v * dx) + ¢ * sqrt(dx * dx + dy * dy);

dx = x[2 * maplidx + 0] - x[2 * map4idx + 0];
dy = x[2 * maplidx + 1] - x[2 * map4idx + 1];
adt[iteration] += fabs(u * dy - v * dx) + ¢ * sqrt(dx * dx + dy * dy);

adt[iteration] = (adt[iteration]) / cfl;
}

Similar to the direct loop, we outline the loop body and call it within the loop as follows:

//outlined elemental kernel - adt_calc
inline void adt_calc(double *x1, double *x2, double *x3,
double *x4, double *q, double *adt) {
double dx, dy, ri, u, v, c;

ri = 1.0f / q[0];

u=ri* q[1];
v =ri * q[2];
c = sqrt(gam * gml * (ri * q[3] - 0.5f * (u * u + v * v)));

dx = x2[0] - x1[0];
dy = x2[1] - x1[1];
*adt = fabs(u * dy - v * dx) + ¢ * sqrt(dx * dx + dy * dy);

dx = x3[0] - x2[0];
dy = x3[1] - x2[1];
*adt += fabs(u * dy - v * dx) + ¢ * sqrt(dx * dx + dy * dy);

dx = x4[0] - x3[0];
dy = x4[1] - x3[1];
*adt += fabs(u * dy - v * dx) + ¢ * sqrt(dx * dx + dy * dy);

dx = x1[0] - x4[0];
dy = x1[1] - x4[1];
*adt += fabs(u * dy - v * dx) + ¢ * sqrt(dx * dx + dy * dy);

*adt = (*adt) / cfl;
3

//adt_calc - calculate area/timstep : iterates over cells
for (int iteration = 0; iteration < ncell; ++iteration) {
int maplidx = cell[iteration * 4 + 0];

(continues on next page)
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(continued from previous page)
int map2idx = cell[iteration * 4 + 1];
int map3idx = cell[iteration * 4 + 2];
int map4idx = cell[iteration * 4 + 3];

adt_calc(&[2 * maplidx], &x[2 * map2idx], &x[2 * map3idx],
&x[2 * map4idx], &q[4 * iteration], &adt[iteration]);
}

Now, convert the loop to use the op_par_loop API:

//res_calc - calculate flux residual: iterates over edges
op_par_loop(adt_calc, "adt_calc", cells,
op_arg_dat(p_x, 0, pcell, 2
op_arg_dat(p_x, 1, pcell, 2
op_arg_dat(p_x, 2, pcell, 2
op_arg_dat(p_x, 3, pcell, 2
op_arg_dat(p_q, -1, OP_ID, 4
op_arg_dat(p_adt,-1, OP_ID, 1

, "'double", OP_READ ),
, "double", OP_READ ),
, "'double", OP_READ ),
, "'double", OP_READ ),
, ''double", OP_READ ),
, 'double", OP_WRITE));

Note in this case how the indirections are specified using the mapping declared as OP2 map pcell, indicating the to-set
index (2nd argument), and access mode OP_READ.

3.9 Step 5 - Global reductions

At this stage almost all the remaining loops can be converted to the OP2 API. Only the final loop update that updates
the flow field needs special handling due to its global reduction:

rms = 0.0f;
for (int iteration = 0; iteration < ncell; ++iteration) {
double del, adti;

adti = 1.0f / (adt[iteration]);

for (int n = 0; n < 4; n++) {
del = adti * res[iteration * 4 + n];
gliteration * 4 + n] = gold[iteration * 4 + n] - del;
res[iteration * 4 + n] = 0.0f;
rms += del * del;
}
}

Here, the global variable rms is used as a reduction variable to compute the rms value of the residual. The kernel can
be outlined as follows:

//outlined elemental kernel - update
inline void update(const double *qgold, double *q, double *res,
const double *adt, double *rms) {
double del, adti;

adti = 1.0f / (¥adt);

(continues on next page)
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(continued from previous page)
for (int n = 0; n < 4; n++) {
del = adti * res[n];
qln] = gold[n] - del;
res[n] = 0.0f;
*rms += del * del;
}
}

And then call it in the application:

//update = update flow field - iterates over cells
rms = 0.0f;
for (int iteration = 0; iteration < ncell; ++iteration) {
update(&gold[iteration * 4], &g[iteration * 4], &res[iteration * 4],
&adt[iteration], &rms);

}

The global reduction requires the op_arg_gbl API call with OP_INC access mode to indicate that the variable is a
global reduction:

//update = update flow field - iterates over cells
rms = 0.0f;
op_par_loop(update, "update", cells,

op_arg_dat(p_qold, -1, OP_ID, 4, "double", OP_READ ),
op_arg_dat(p_q, -1, OP_ID, 4, "double", OP_WRITE),
op_arg_dat(p_res, -1, OP_ID, 4, "double", OP_RW ),
op_arg_dat(p_adt, -1, OP_ID, 1, "double", OP_READ ),
op_arg_gbl (&rms, 1, "double", OP_INC ));

At this point all the loops have been converted to use op_par_loop API and the application should be validating
when executed on as sequential, single threaded CPU application. You should now also be able to run without the
OP_NO_REALLOC runtime flag and still get a valid result. However, in this case you should note that OP2 will be making
internal copies of the data declared for op_map and op_dat . When developing applications for performance, you
should consider freeing the initial memory allocated immediately after the relevant op_decl_map and op_decl_dat
calls. In the next step we avoid freeing such “application developer allocated” memory by using HDFS5 file I/O so that
mesh data is directly read from file to OP2 allocated internal memory.

3.10 Step 6 - Handing it all to OP2

Once the developer sequential version has been created and the numerical output validates the application can be
prepared to obtain a developer distributed memory parallel version. This step can be completed to obtain a parallel
executable, without code-generation if the following steps are implemented.

(1) File I/O needs to be extended to allow distributed memory execution with MPI. The current Airfoil application
simply reads the mesh data from a text file and such a simple setup will not be workable on a distributed mem-
ory system, such as a cluster and more importantly will not be scalable with MPI. The simplest solution is to
use OP2’s HDF5 API for declaring the mesh by replacing op_decl_set, op_decl_map, op_decl_dat and
op_decl_const by its HDF5 counterparts as follows:

// declare sets
op_set nodes = op_decl_set_hdf5(file, '"nodes" );
(continues on next page)
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(continued from previous page)

op_decl_set_hdf5(file, "edges" );
op_decl_set_hdf5(file, "bedges");

op_set edges =
op_set bedges =

op_set cells = op_decl_set_hdf5(file, "cells" );

//declare maps

op_map pedge = op_decl_map_hdf5(edges, nodes, 2, file, "pedge" );
op_map pecell = op_decl_map_hdf5(edges, cells, 2, file, "pecell” );
op_map pbedge = op_decl_map_hdf5(bedges, nodes, 2, file, "pbedge" );
op_map pbecell = op_decl_map_hdf5(bedges, cells, 1, file, "pbecell™);
op_map pcell = op_decl_map_hdf5(cells, nodes, 4, file, "pcell" );
//declare data on sets

op_dat p_bound = op_decl_dat_hdf5(bedges, 1, "int", file, "p_bound");
op_dat p_x = op_decl_dat_hdf5(nodes, 2, "double", file, "p_x" );
op_dat p_gq = op_decl_dat_hdf5(cells, 4, "double", file, "p_qg" );
op_dat p_qold = op_decl_dat_hdf5(cells, 4, "double", file, "p_gold" );
op_dat p_adt = op_decl_dat_hdf5(cells, 1, "double", file, "p_adt" );
op_dat p_res = op_decl_dat_hdf5(cells, 4, "double", file, "p_res" );
//read and declare global constants

op_get_const_hdf5("gam", 1, "double", (char *)&gam, file);
op_get_const_hdf5("'gml", 1, "double", (char *)&gml, file);
op_get_const_hdf5("cfl", 1, "double", (char *)&cfl, file);
op_get_const_hdf5("eps", 1, "double", (char *)&eps, file);
op_get_const_hdf5("alpha", 1, "double", (char *)&alpha,file);
op_get_const_hdf5("qinf", 4, "double", (char *)&qinf, file);
op_decl_const(l, "double", &gam );

op_decl_const(l, "double", &gml );

op_decl_const(1l, "double", &cfl );

op_decl_const(l, "double", &eps );

op_decl_const(1l, "double", &alpha);

op_decl_const(4, "double", qinf );

Note here that we assume that the mesh is already available as an HDF5 file named new_grid.h5. (See the
convert_mesh.cpp utility application in OP2-Common/apps/c/airfoil/airfoil_hdf5/dp to understand how
we can create an HDFS5 file to be compatible with the OP2 API for Airfoil starting from mesh data defined in a text
file.)

When the application has been switched to use the HDF5 API calls, manually allocated memory for the mesh elements
can be removed. Additionally all printf statements should use op_printf so that output to terminal will only be done
by the ROOT mpi process. We can also replace the timer routines with OP2’s op_timers which times the execution
of the code the ROOT.

Given that the mesh was read via HDFS5, to obtain the global sizes of the mesh, OP2’s op_get_size () API call need
to be used. This is required for the Airfoil application to obtain the number of cells to compute the rms value for every
100 iterations to validate the application:

//get global number of cells
ncell = op_get_size(cells);

(2) Add the OP2 partitioner call op_partition to the code in order to signal to the MPI back-end, the point in the
program that all mesh data have been defined and mesh can be partitioned and MPI halos can be created:
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op_decl_const(1l, "double", &alpha);
op_decl_const(4, "double", qinf );

//output mesh information
op_diagnostic_output();

//partition mesh and create mpi halos
op_partition("BLOCK", "ANY", edges, pecell, p_x);

See the API documentation for practitioner options. In this case no special partitioner is used leaving the initial block
partitioning of data at the time of file I/O through HDFS5.

Take a look at the code in the /step6 for the full code changes done to the Airfoil application. The application can
now be compiled to obtain a developer distributed-memory (MPI) parallel executable using the Makefile in the same
directory. Note how the executable is created by linking with the OP2 MPI back-end, 1ibop2_mpi together with the
HDFS5 library 1ibhd£5. You will need to have had HDFS library installed on your system to carry out this step.

The resulting executable is called a developer MPI version of the application, which should again be used to verify
validity of the application by running with mpirun in the usual way of executing an MPI application.

3.11 Step 7 - Code generation

Now that both the sequential and MPI developer versions work and validate, its time to generate other parallel versions.
However, first we should move the elemental kernels to header files so that after the code generation the modified main
application will not have the same elemental kernel definitions. This is currently a limitation of the code-generator,
which will be remedied in future versions.

We move the elemental kernels to header files, each with the name of the kernel and include them in the
airfoil_step7.cpp main file:

/* Global Constants */
double gam, gml, cfl, eps, mach, alpha, qinf[4];

//

// kernel routines for parallel loops
//

#include "adt_calc.h"

#include "bres_calc.h"

#include "res_calc.h"

#include "save_soln.h"

#include "update.h"

Now the code is ready for code-generation, go to the /step7 directory and on the terminal type :

python $OP2_INSTALL_PATH/../translator/c/op2.py airfoil_step7.cpp
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Note that the python command assumes that it will point to Python 3.* or above. This will then generate (in the
same directory) parallel code under sub-directories - cuda, openacc, openmp, openmp4, seq and vec. They
correspond to on-node parallel version based on CUDA, OpenACC, OpenMP, OpenMP4.0 (and higher) and SIMD
vectorized, respectively. Each of them can also run in combination with distributed memory parallelization using MPI
across nodes.

The Makefile in /step7 simply uses the OP2 supplied makefiles:

APP_NAME := airfoil_step7

APP_ENTRY := $(APP_NAME) .cpp
APP_ENTRY_MPI := $(APP_ENTRY)

OP2_LIBS_WITH_HDF5 := true

include ../../../../../makefiles/common.mk
include ../../../../../makefiles/c_app.mk

This will build all the currently supported parallel versions, provided that the supporting libraries are available on your
system and the relevant OP2 back-end libraries have been built.

3.12 Final - Code generated versions and execution

The following parallel versions will be generated from the code generator. These and the previously developed devel-
oper versions and can be executed as follows (see the /final directory in the OP2-APPS repository for all the generated
code) :

(1) Developer sequential and developer mpi - no code-generation required.

#developer sequential
./aifroil_seq

#developer distributed memory with mpi, on 4 mpi procs
$MPI_INSTAL_PATH/bin/mpirun -np 4 ./airfoil_mpi_seq

(2) Code-gen sequential and MPI + Code-gen sequential

# code-gen sequential

./aifroil_genseq

#0n 4 mpi procs

$MPI_INSTAL_PATH/bin/mpirun -np 4 ./aifroil_mpi_genseq

(3) Code-gen OpenMP, on 4 OpenMP threads, with mini-partition size of 256 and MPI + Code-gen OpenMP, on 4
MPI x 8 OpenMP with with mini-partition size of 256

# on 4 OMP threads

export OMP_NUM_THREADS=4; ./aifroil_openmp OP_PART_SIZE=256

#0n 4 mpi procs with each proc running 8 OpenMP threads

export OMP_NUM_THREADS=8; $MPI_INSTAL_PATH/bin/mpirun -np 4 ./aifroil_mpi_openmp with.
—mini-partition size of 256

(4) Code-gen SIMD vectorized and MPI + Code-gen SIMD vectorized, on 4 MPI
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#SIMD vec

./aifroil_vec

#0n 4 mpi procs with each proc running SIMD vec
$MPI_INSTAL_PATH/bin/mpirun -np 4 ./aifroil_mpi_vec

(5) Code-gen CUDA with mini-partition size of 128 and CUDA thread-block size of 192 and MPI + Code-gen CUDA

#0n a single GPU

./airfoil_cuda OP_PART_SIZE=128 OP_BLOCK_SIZE=192

#0n 4 mpi procs, each proc having a GPU

$MPI_INSTALL_PATH/bin/mpirun -np 4 ./airfoil_mpi_cuda OP_PART_SIZE=128 OP_BLOCK_SIZE=192

(6) MPI + Code-gen hybrid CUDA with mini-partition size of 128 and CUDA thread-block size of 192

The hybrid version can be run on both CPUs and GPUs at the same time. If there is only 4 GPUs are
available the following execution will allocated 4 MPI procs to be run on 4 GPUs and 8 MPI procs allocated
to the remaining CPU cores.

#0n 12 mpi procs
$MPI_INSTALL_PATH/bin/mpirun -np 12 ./airfoil_mpi_cuda_hyb OP_PART_SIZE=128 OP_BLOCK_
—SIZE=192

(7) Code-gen OpenACC with mini-partition size of 128 and thread-block size of 192 and MPI + Code-gen OpenACC

#0n a single GPU

./airfoil_openacc OP_PART_SIZE=128 OP_BLOCK_SIZE=192

#0n 4 mpi procs, each proc having a GPU

$MPI_INSTALL_PATH/bin/mpirun -np 4 ./airfoil_mpi_openacc OP_PART_SIZE=128 OP_BLOCK_
—SIZE=192

3.13 Optimizations

See the Performance Tuning section for a number of specific compile-time and runtime flags to obtain better perfor-
mance.
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CHAPTER
FOUR

OP2 API

4.1 Overview

The key characteristic of unstructured-mesh applications is the explicit connectivity required to specify the mesh and
access data (indirectly) on neighboring mesh elements during computation over mesh elements. As such OP2 allows to
describe an unstructured mesh by a number of sets, where depending on the application, these sets might be of nodes,
edges, faces, cells of a variety of types, far-field boundary nodes, wall boundary faces, etc. Associated with these are
data (e.g. coordinate data at nodes) and mappings to other sets (i.e. explicit connectivity, e.g. edge mapping to the two
nodes at each end of the edge). All of the numerically-intensive operations can then be described as a loop over all
members of a set, carrying out some operations on data associated directly with the set or with another set through a

mapping.

4.2 Key Concepts and Structure

OP2 makes the important restriction that the order in which the function is applied to the members of the set must
not affect the final result to within the limits of finite precision floating-point arithmetic. This allows the parallel
implementation to choose its own ordering to achieve maximum parallel efficiency. Two other restrictions are that the
sets and maps are static (i.e. they do not change) and the operands in the set operations are not referenced through a
double level of mapping indirection (i.e. through a mapping to another set which in turn uses another mapping to data
in a third set).

OP2 currently enables users to write a single program at a high-level API declaring the unstructured-mesh problem.
Then the OP2 code-generator can be used to automatically generate a number of different paralleizations, using different
parallel programing models, targeting modern multi-core and many-core hardware. The most mature parallel code
generated by OP2 are :

(1) Single-threaded on a CPU including code parallelized using SIMD
(2) Multi-threaded using OpenMP for multicore CPU systems
(3) Parallelized using CUDA for NVIDIA GPUs.

Further to these there are also in-development versions that can emit SYCL and AMD HIP for parallelization on a wider
range of GPUs. All of the above can be combined with distributed-memory MPI parallelization to run of clusters of
CPU or GPU nodes. The user can either use OP2’s parallel file I/O capabilities for HDFS5 files with a specified structure,
or perform their own parallel file I/O using custom MPI code.

Note: This documentation describes the C++ API, but FORTRAN 90 is also supported with a very similar APIL.

A computational project can be viewed as involving three steps:
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* Writing the program.
* Debugging the program, often using a small testcase.
* Running the program on increasingly large applications.
With OP2 we want to simplify the first two tasks, while providing as much performance as possible for the third.

To achieve the high performance for large applications, a code-generator is needed to generate the CUDA code for GPUs
or OpenMP code for multicore x86 systems. However, to keep the initial development simple, a development single-
threaded executable can be created without any special tools; the user’s main code is simply linked to a set of library
routines, most of which do little more than error-checking to assist the debugging process by checking the correctness
of the user’s program. Note that this single-threaded version will not execute efficiently. The code-generator is needed
to generate efficient single-threaded (see 1. above) , SIMD and OpenMP code for CPU systems.

Fig. 4.1 shows the build process for a single thread CPU executable. The user’s main program (in this case jac.cpp)
uses the OP2 header file op_seq.h and is linked to the appropriate OP2 libraries using g++, perhaps controlled by a
Makefile.

op_seq.hf----- 4 jac.cpp libop2_seq.a

[ make / g++ ]

Fig. 4.1: Build process for a single-threaded development executable.

Fig. 4.2 shows the build process for the corresponding CUDA executable. The code-generator parses the user’s main
program and produces a modified main program and a CUDA file which includes a separate file for each of the kernel
functions. These are then compiled and linked to the OP libraries using g++ and the NVIDIA CUDA compiler nvcc,
again perhaps controlled by a Makefile.

jac.cpp

[ preprocessor / code generator ]

jac_op.c jac_kernels.cu res_kernel.cu libop2_cuda.a
Jac_op-Cpp |J - ) }(_ update_kernel.cu ‘ - : ‘
[ make / nvcc / g++ J

Fig. 4.2: Build process for a CUDA accelerated executable.

Fig. 4.3 shows the OpenMP build process which is very similar to the CUDA process except that it uses *. cpp files
produced by the code-generator instead of *. cu files.

In looking at the API specification, users may think it is somewhat verbose in places. For example, users have to
re-supply information about the datatype of the datasets being used in a parallel loop. This is a deliberate choice to
simplify the task of the code-generator, and therefore hopefully reduce the chance for errors. It is also motivated by the
thought that “programming is easy; it’s debugging which is difficult”: writing code isn’t time-consuming, it’s correcting
it which takes the time. Therefore, it’s not unreasonable to ask the programmer to supply redundant information, but
be assured that the code-generator or library will check that all redundant information is self-consistent. If you declare
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jac.cpp

[ preprocessor / code generator ]
- - res_kernel.cpp -
jac_op.cpp | jac_kernels.cpp }<— - -4 update_kernel.cpp I libop2_openmp.a |

[ make / icc j

Fig. 4.3: Build process for an OpenMP accelerated executable.

a dataset as being of type OP_DOUBLE and later say that it is of type OP_FLOAT this will be flagged up as an error at
run-time.

4.3 OP2 C/C++ API

4.3.1 Initialisation and Termination

void op_init (int argc, char **argyv, int diags_level)

This routine must be called before all other OP routines. Under MPI back-ends, this routine also calls
MPI_Init() unless its already called previously.

Parameters
» argc — The number of command line arguments.
* argv — The command line arguments, as passed tomain().

» diags_level — Determines the level of debugging diagnostics and reporting to be per-
formed.

The values for diags_level are as follows:
* 0: None.
¢ 1: Error-checking.
 2: Info on plan construction.
* 3: Report execution of parallel loops.
* 4: Report use of old plans.
* 7: Report positive checks in op_plan_check()

void op_exit()

This routine must be called last to cleanly terminate the OP2 runtime. Under MPI back-ends, this routine also
calls MPI_Finalize() unless its has been called previously. A runtime error will occur if MPI_Finalize() is
called after op_exit ().

op_set op_decl_set (int size, char *name)

This routine declares a set.

Parameters
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» size — Number of set elements.
* name — A name to be used for output diagnostics.

Returns
A set ID.

op_map op_decl_map (op_set from, op_set to, int dim, int *imap, char *name)

This routine defines a mapping between sets.
Parameters
» from - Source set.
* to — Destination set.
* dim — Number of mappings per source element.
* imap — Mapping table.
* name — A name to be used for output diagnostics.

void op_partition(char *lib_name, char *lib_routine, op_set prime_set, op_map prime_map, op_dat coords)

This routine controls the partitioning of the sets used for distributed memory parallel execution.
Parameters
* 1ib_name — The partitioning library to use, see below.

e lib_routine — The partitioning algorithm to use. Required if using "PTSCOTCH",
"PARMETIS" or https://kahip.github.io/ as the lib_name.

» prime_set — Specifies the set to be partitioned.

» prime_map — Specifies the map to be used to create adjacency lists for the prime_set. Re-
quired if using "KWAY" or "GEOMKWAY".

» coords — Specifies the geometric coordinates of the prime_set. Required if using "GEOM"
or "GEOMKWAY".

The current options for lib_name are:
e "PTSCOTCH": The PT-Scotch library.
e "PARMETIS": The ParMETIS library.
e "KAHIP": The KaHIP library.
e "INERTIAL": Internal 3D recursive inertial bisection partitioning.
» "EXTERNAL": External partitioning optionally read in when using HDF5 I/O.
e "RANDOM": Random partitioning, intended for debugging purposes.
The options for lib_routine when using "PTSCOTCH" or "KAHIP" are:
e "KWAY": K-way graph partitioning.
The options for lib_routine when using "PARMETIS" are:
e "KWAY": K-way graph partitioning.
e "GEOM": Geometric graph partitioning.

* "GEOMKWAY": Geometric followed by k-way graph partitioning.
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void op_decl_const (int dim, char *type, T *dat)

This routine defines constant data with global scope that can be used in kernel functions.
Parameters
e dim — Number of data elements. For maximum efficiency this should be an integer literal.

* type — The type of the data as a string. This can be either intrinsic ("float", "double",
"int", "uint", "11", "ull", or "bool") or user-defined.

» dat — A pointer to the data, checked for type consistency at run-time.

Note: If dim is 1 then the variable is available in the kernel functions with type T, otherwise it will be available
with type T*.

Warning: If the executable is not preprocessed, as is the case with the development sequential build, then
you must define an equivalent global scope variable to use the data within the kernels.

op_dat op_decl_dat (op_set set, int dim, char *type, T *data, char *name)

This routine defines a dataset.
Parameters
» set — The set the data is associated with.
e dim — Number of data elements per set element.

* type — The datatype as a string, as with op_decI_const (). A qualifier may be added to
control data layout - see Dataset Layout.

» data - Inputdata of type T (checked for consistency with type at run-time). The data must be
provided in AoS form with each of the dim elements per set element contiguous in memory.

* name — A name to be used for output diagnostics.

Note: At present dim must be an integer literal. This restriction will be removed in the future but an integer
literal will remain more efficient.

op_dat op_decl_dat_temp (op_set set, int dim, char *type, T *data, char *name)
Equivalent to op_decI_dat () but the dataset may be released early with op_free_dat_temp().

void op_free_dat_temp (op_dat dat)
This routine releases a temporary dataset defined with op_decI_dat_temp()

Parameters

¢ dat — The dataset to free.
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4.3.2 Dataset Layout

The dataset storage in OP2 can be configured to use either AoS (Array of Structs) or SoA (Struct of Arrays) layouts.
As a default the AoS layout is used, matching what is supplied to op_decl_dat (), however depending on the access
patterns of the kernels and the target hardware platform the SoA layout may perform favourably.

OP2 can be directed to ues SoA layout storage by setting the environment variable OP_AUTO_SOA=1 prior to code
translation, or by appending :soa to the type strings in the op_decl_dat () calls. The data supplied by the user
should remain in the AoS layout.

4.3.3 Parallel Loops

void op_par_loop (void (*kernel)(...), char *name, op_set set, ...)

This routine executes a parallelised loop over the given set, with arguments provided by the op_arg_gbI (),
op_arg_dat (), and op_opt_arg_dat () routines.

Parameters

* kernel - The kernel function to execute. The number of arguments to the kernel should
match the number of op_arg arguments provided to this routine.

* name — A name to be used for output diagnostics.
» set — The set to loop over.
* ... —The op_arg arguments passed to each invocation of the kernel.

op_arg op_arg_gbl (T *data, int dim, char *type, op_access acc)

This routine defines an op_arg that may be used either to pass non-constant read-only data or to compute a
global sum, maximum or minimum.

Parameters
» data — Source or destination data array.
e dim — Number of data elements.
* type — The datatype as a string. This is checked for consistency with data at run-time.
* acc — The access type.
Valid access types for this routine are:

* OP_READ: Read-only.

e OP_INC: Global reduction to compute a sum.

* OP_MAX: Global reduction to compute a maximum.

e OP_MIN: Global reduction to compute a minimum.

op_arg op_arg_dat (op_dat dat, int idx, op_map map, int dim, char *type, op_access acc)

This routine defines an op_arg that can be used to pass a dataset either directly attached to the target op_set or
attached to an op_set reachable through a mapping.

Parameters
¢ dat — The dataset.

 idx — The per-set-element index into the map to use. You may pass a negative value here to
use a range of indicies - see below. This argument is ignored if the identity mapping is used.
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* map — The mapping to use. Pass OP_ID for the identity mapping if no mapping indirection
is required.

* dim — The dimension of the dataset, checked for consistency at run-time.
* type — The datatype of the dataset as a string, checked for consistency at run-time.
* acc — The access type.
Valid access types for this routine are:

* OP_READ: Read-only.

e OP_WRITE: Write-only.

* OP_RW: Read and write.

e OP_INC: Increment or global reduction to compute a sum.

The idx parameter accepts both positive values to specify a single per-element map index, where the kernel is
passed a single dimension array of data, or negative values to specify a range of mapping indicies leading to
the kernel being passed a two-dimensional array of data. If a negative index is provided the first -idx mapping
indicies are provided to the kernel.

Consider the example of a kernel that is executed over a set of triangles, and is supplied the verticies via ar-
guments. Using positive idx you would need one op_arg per vertex, leading to a kernel declaration similar
to:

[void kernel (float *v1, float *v2, float *v3, ...);

Alternatively, using a negative idx of -3 allows a more succinct declaration:

[void kernel (float **v[3], ...): ]

Warning: OP_WRITE and OP_RW accesses must not have any potential data conflicts. This means that two
different elements of the set cannot, through a map, reference the same elements of the dataset.

Furthermore with OP_WRITE the kernel function must set the value of all dim components of the dataset. If
this is not possible then OP_RW access should be specified.

Note: At present dim must be an integer literal. This restriction will be removed in the future but an integer
literal will remain more efficient.

op_arg op_opt_arg_dat (op_dat dat, int idx, op_map map, int dim, char *type, op_access acc, int flag)

This routine is equivalent to op_arg_dat () except for an extra flag parameter that governs whether the argument
will be used (non-zero) or not (zero). This is intended to ease development of large application codes where many
features may be enabled or disabled based on flags.

The argument must not be dereferenced in the user kernel if flag is set to zero. If the value of the flag needs to
be passed to the kernel then use an additional op_arg_gbl () argument.
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4.3.4 HDF5 1/0

HDFS5 has become the de facto format for parallel file I/O, with various other standards like CGNS layered on top. To
make it as easy as possible for users to develop distributed-memory OP2 applications, we provide alternatives to some
of the OP2 routines in which the data is read by OP2 from an HDFS5 file, instead of being supplied by the user. This is
particularly useful for distributed memory MPI systems where the user would otherwise have to manually scatter data
arrays over nodes prior to initialisation.

op_set op_decl_set_hdf5 (char *file, char *name)

Equivalent to op_decl_set () but takes a file instead of size, reading in the set size from the HDFS5 file using
the keyword name.

op_map op_decl_map_hdf5 (op_set from, op_set to, int dim, char *file, char *name)

Equivalent to op_decl_map () but takes a file instead of imap, reading in the mappiing table from the HDF5
file using the keyword name.

op_dat op_decl_dat_hdf5 (op_set set, int dim, char *type, char *file, char *name)

Equivalent to op_decl_dat () but takes a file instead of data, reading in the dataset from the HDF5 file using
the keyword name.

void op_get_const_hdf5 (char *name, int dim, char *type, char *data, char *file)

This routine reads constant data from an HDF? file.
Parameters
» name — The name of the dataset in the HDFS5 file.
* dim — The number of data elements in the dataset.
* type — The string type of the data.
» data — A user-supplied array of at least dim capacity to read the data into.

e file — The HDFS5 file to read the data from.

Note: To use the read data from within a kernel function you must declare it with op_decl_const ()

Warning: The number of data elements specified by the dim parameter must match the number of data
elements present in the HDFS file.

4.3.5 MPI without HDF5 1/O

If you wish to use the MPI executables but don’t want to use the OP2 HDFS5 support, you may perform your own file I/O
and then provide the data to OP2 using the normal routines. The behaviour of these routines under MPI is as follows:

* op_decl_set(): The size parameter is the number of elements provided by this MPI process.

e op_decl_map(): The imap parameter provides the part of the mapping table corresponding to the processes
share of the from set.

e op_decl_dat(): The data parameter provides the part of the dataset corresponding to the processes share of
the set set.

For example if an application has 4 processes, 4M nodes and 16M edges, then each process might be responsible for
providing 1M nodes and 4M edges.
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Note: This is effectively using simple contiguous block partitioning of the datasets, but it is important to note that this
is strictly for I/O and this partitioning will not be used for the parallel computation. OP2 will re-partition the datasets,
re-number the mapping tables and then shuffle the data between the MPI processes as required.

4.3.6 Other I/O and Utilities

void op_printf (const char *format, ...)

This routine wraps the standard printf() but only prints on the MPI_ROOT process.

void op_fetch_data(op_dat dat, T *data)
This routine copies data held in an op_dat from the OP2 backend into a user allocated memory buffer.

Parameters
* dat — The dataset to copy from.

» data — The user allocated buffer to copy into.

Warning: The memory buffer provided by the user must be large enough to hold all elements in the op_dat.

void op_fetch_data_idx(op_dat dat, T *data, int low, int high)

This routine is equivalent to op_fetch_data() but with extra parameters to specify the range of data elements
to fetch from the op_dat.

Parameters
» dat — The dataset to copy from.
* data - The user allocated buffer to copy into.
* low — The index of the first element to be fetched.
e high — The index of the last element to be fetched.

void op_fetch_data_hdf5_file(op_dat dat, const char *file_name)
This routine writes the data held in an op_dat from the OP2 backend into an HDFS5 file.

Parameters
e dat — The source dataset.
e file — The name of the HDF?5 file to write the dataset into.

void op_print_dat_to_binfile(op_dat dat, const char *file_name)
This routine writes the data held in an op_dat from the OP2 backend into a binary file.

Parameters
» dat — The source dataset.
» file — The name of the binary file to write the dataset into.

void op_print_dat_to_txtfile(op_dat dat, const char *file_name)
This routine writes the data held in an op_dat from the OP2 backend into a text file.

Parameters

* dat — The source dataset.
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e file — The name of the text file to write the dataset into.

int op_is_root()
This routine allows a convenient way to test if the current process is the MPI root process.

Return values
e 1 - Process is the MPI root.
e 0 — Process is not the MPI root.

int op_get_size(op_set set)
This routine gets the global size of an op_set.

Parameters
* set — The set to query.

Returns
The number of elements in the set across all processes.

void op_dump_to_hdf£5 (const char *file_name)

This routine dumps the contents of all op_sets, op_dats and op_maps to an HDFS5 file as held internally by
OP2, intended for debugging purposes.

Parameters
e file_name — The name of the HDFS file to write the data into.

void op_timers (double *cpu, double *et)

This routine provides the current wall-clock time in seconds since the Epoch using gettimeofday ().
Parameters
¢ cpu — Unused.
* et — A variable to hold the time.
void op_timing_output ()
This routine prints OP2 performance details.
void op_timings_to_csv(const char *file_name)

This routine writes OP2 performance details to the specified CSV file. For MPI executables the timings are broken
down by rank. For OpenMP executables with the OP_TIME_THREADS environment variable set, the timings are
broken down by thread. For MPI + OpenMP executables with OP_TIME_THREADS set the timings are broken
down per thread per rank.

Parameters
» file_name — The name of the CSV file to write.

void op_diagnostic_output()

This routine prints diagnostics relating to sets, mappings and datasets.
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CHAPTER
FIVE

EXAMPLES

See the OP2-APPS repository to see the latest generated parallel code for each application.

5.1 Airfoil

e The Airfoil mesh can be downloaded from here. or generated from Matlab using the mesh generators in
OP2-Common/apps/mesh_generators/naca®012.m

* An older version of the airfoil implementation example is archived in PDF form here.

Warning: This document has not been updated for a significant amount of time; beware that the information
contained may be out-of-date.
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SIX

PERFORMANCE TUNING

6.1 Executing with GPUDirect

OP2 supports execution with GPU direct MPI when using the MPI + CUDA builds. To enable this, simply pass
-gpudirect as a command line argument when running the executable.

You may also have to user certain environment variables depending on MPI implementation, so check your cluster’s
user-guide.

6.2 OpenMP and OpenMP+MPI

It is recommended that you assign one MPI rank per NUMA region when executing MPI+OpenMP parallel code.
Usually for a multi-CPU system a single CPU socket is a single NUMA region. Thus, for a 4 socket system, OP2’s
MPI+OpenMP code should be executed with 4 MPI processes with each MPI process having multiple OpenMP threads
(typically specified by the OMP_NUM_THREAD flag). Additionally on some systems using numactl to bind threads to
cores could give performance improvements.
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CHAPTER
SEVEN

DEVELOPER GUIDE

The developer guide is currently available in PDF form here, with an extension document detailing the MPI implemen-
tation here.

These documents are intended for anyone looking to develop OP2, or looking for a deeper insight into the operational
details. If you just wish to use OP2 in your project then the OP2 C/C++ API should suffice.

Warning: These documents have not been updated for a significant amount of time; beware that the information
contained may be out-of-date.

7.1 Contributing

To contribute to OP2 please use the following steps :
1. Clone the OP2 repository (on your local system).
2. Create a new branch in your cloned repository
3. Make changes / contributions in your new branch
4. Submit your changes by creating a Pull Request to the master branch of the OPS repository

Cumulated contributions in the master branch will be included in a new release.
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EIGHT

PUBLICATIONS

See OP-DSL publications page.
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NINE

INDICES AND TABLES

* genindex

e search
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